Isolamento de amido

Objetivo:

Isolar o amido da batata; preparar sua solução; testar a presença de amido na solução

Considerações:

O amido é o principal carboidrato de reserva vegetal, além de ser o mais importante da alimentação humana. É encontrado na forma de grânulos nos cloroplastos das folhas, nas frutas, nas sementes e tubérculos. A quantidade de amido em sementes e tubérculos como a batata é extremamente alta, podendo chegar a 75% do peso seco.

Os grânulos de amido são insolúveis. Quando uma suspensão de amido é aquecida, os grânulos se desintegram, formando uma solução coloidal. O amido pode ser precipitado destas soluções em condições que promovam sua desidratação, tais como adição de álcool etílico ou solução saturada de um sal.

Estruturalmente, o amido consiste de uma mistura de dois polímeros de glicose, a amilose e a amilopectina. A amilose é um polissacarídeo linear formado por unidades de D-glicose unidas por ligações glicosídicas do tipo α -(1-4). A amilopectina é altamente ramificada, sendo formada por unidades de D-glicose ligadas α -(1-4) e α -(1-6). A frequência de ramificações ao longo da cadeia princiapl é de uma a cada 24-30 unidades de glicose.

Por causa de sua estrutura regular, a amilose adota uma conformação em hélice com seis unidades de glicose por volta. Não se sabe ao certo se a amilopectina adota algum tipo de conformação preferencial.

Existem várias reações que permitem caracterizar a presença de carboidratos em uma solução, entre as quais a reação de Molisch. Nesta reação, os carboidratos são desidratados a um derivado furfural, ou hidroximetil-furfural, quando na presença de um ácido concentrado sobre uma pentose ou hexose, respectivamente. Os derivados furfúricos, então condensam-se com o α -naftol (reativo de Molisch), formando um produto de cor violeta. Esta reação é positiva

para todos os carboidratos, livres ou polimerizados. No caso do amido, inicialmente ocorrerá hidrólise pela reação do ácido sulfúrico, liberando moléculas de glicose. Na reação positiva, formar-se-á uma zona de cor violeta e verde na interface.

Um teste bastante utilizado para detectar a presença de amido é a reação com iodo, que utiliza lugol (mistura de iodo e iodeto de potássio). Moléculas de iodo podem ser ocluídas pela hélice da amilose, formando um complexo azul escuro. No complexo amido-iodo, as moléculas de iodo estão paralelas ao eixo da hélice. Seis voltas da hélice (contendo 36 unidades de glicose) são necessárias para produzir a cor azul, característica do complexo. O componente do amido responsável por esta coloração característica é a amilose, entretanto a reação com a amilopectina dá origem a uma cor marrom-avermelhada. Este complexo se dissocia por aquecimento graças à perda da estrutura helicoidal, e volta a se formar quando a solução é resfriada.

Materiais:

Liquidificador	Funil
Becher de 500 ml e 250 ml	Pipetas de 5 e 10 ml
Bastão de vidro	Batata inglesa
Gaze	Amido a 1%
Tubos de ensaio	Solução de lugol (Dissolvem-se 2 g de iodeto de
	potássio (KI) em 100 ml de água destilada.
	Acrescentar 1 g de cristais de iodo. Completar a 300
	ml de água destilada.)
Chapa de aquecimento	Reagente de DNS

Procedimento

a) Isolamento do amido e preparo da solução de amido

Colocar cerca de 50g de batata inglesa no liquidificador com 100 ml de água destilada e homogeneizar. Filtrar em gaze, deixando o filtrado em repouso para sedimentação do amido. Eliminar o máximo do sobrenadante conservando o sedimento. Verter parte deste sedimento sobre becher contendo 100 ml de água. Ferver agitando com bastão de vidro para obtenção da solução coloidal. Deixar esfriar.

b) Reações de caracterização do amido

b1. Reação de iodo

Tomar 2 ml da solução coloidal obtida, colocar em tubo de ensaio, colocar 3 gotas de lugol (observar o resultado). Em seguida aquecer o tubo em banho-maria fervente por 10 minutos, resfriar o tubo. Observar e concluir o que ocorreu.

b2. Reação de Molisch

Em um tubo de ensaio, pipetar 2 ml de solução de amido. Adicionar 3 gotas do reativo de Molisch e misturar. Inclinar o tubo e deixar escorrer pela parede 2 ml de ácido sulfúrico concentrado, de modo que os dois líquidos não se misturem. Observar a interface.

Reativo de Molish – 5 g Naftol/100 ml álcool etílico

b 3. Precipitação com álcool etílico

Em um tubo de ensaio pipetar 5 ml de solução de amido. Adicionar 5 ml de álcool etílico e agitar. Pesquisar separadamente no filtrado e no precipitado a presença de amido pelo teste de iodo.

Resultados e discussão

- 1. O que acontece com a solução coloidal após:
- a) adição de lugol?
- b) fervura?
- c)o resfriamento?

- 2. O que acontece com a solução coloidal após a adição do reativo de Molisch? Em que fase está o amido?
- 3. Após adição de álcool etílico à solução coloidal, em que fração ficou o amido?